Efectos de distintas cepas de Lactiplantibacillus plantarum sobre el rendimiento deportivo: Una revisión narrativa
DOI:
https://doi.org/10.17561/jump.n12.9652Palabras clave:
composicion corporal, probiotico, fatiga, masa muscular, ejercicioResumen
La especie Lactiplantibacillus plantarum pertenece a un género de bacterias lácticas grampositivas que ha suscitado interés en la comunidad científica, por sus diversos efectos biológicos beneficiosos, dado su papel probiótico. El presente trabajo recopila los estudios llevados a cabo desde 2019 en humanos, sobre la influencia de este probiótico en el rendimiento deportivo, la fatiga muscular y la composición corporal. Tras la búsqueda en las bases de datos PubMed, SCOPUS, Google Scholar, Scielo y Chocrane, búsqueda “Lactobacillus plantarum”, “Lactiplantibacillus plantarum”, “fatigue”, “excercise”, “probiotics” y “muscle mass”, cinco estudios fueron seleccionados. Los resultados muestran evidencias claras del potencial que tiene el uso de este probiótico en el ámbito deportivo. Algunos de los resultados más relevantes fueron la mejora del rendimiento deportivo, mejorando el tiempo de agotamiento al 85% del VO2máx, la reducción sérica de los biomarcadores de fatiga y una composición corporal más saludable. Por lo tanto, se podría plantear el futuro uso de L. plantarum como suplemento ergogénico para la mejora del rendimiento y la fatiga, específicamente por sus efectos de adaptación fisiológica.
Referencias
Axling, U., Önning, G., Combs, M. A., Bogale, A., Högström, M., & Svensson, M. (2020). The Effect of Lactobacillus plantarum 299v on Iron Status and Physical Performance in Female Iron-Deficient Athletes: A Randomized Controlled Trial. Nutrients, 12(5), 1279. https://doi.org/10.3390/nu12051279
Chen, Y.-M., Wei, L., Chiu, Y.-S., Hsu, Y.-J., Tsai, T.-Y., Wang, M.-F., & Huang, C.-C. (2016a). Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8(4), 205. https://doi.org/10.3390/nu8040205
Chen, Y.-M., Wei, L., Chiu, Y.-S., Hsu, Y.-J., Tsai, T.-Y., Wang, M.-F., & Huang, C.-C. (2016b). Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8(4), 205. https://doi.org/10.3390/nu8040205
Conterno, L., Fava, F., Viola, R., & Tuohy, K. M. (2011). Obesity and the gut microbiota: Does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes & Nutrition, 6(3), 241-260. https://doi.org/10.1007/s12263-011-0230-1
De Paiva, A. K. F., De Oliveira, E. P., Mancini, L., Paoli, A., & Mota, J. F. (2023). Effects of probiotic supplementation on performance of resistance and aerobic exercises: A systematic review. Nutrition Reviews, 81(2), 153-167. https://doi.org/10.1093/nutrit/nuac046
Di Dio, M., Calella, P., Pelullo, C. P., Liguori, F., Di Onofrio, V., Gallè, F., & Liguori, G. (2023). Effects of Probiotic Supplementation on Sports Performance and Performance-Related Features in Athletes: A Systematic Review. International Journal of Environmental Research and Public Health, 20(3), 2226. https://doi.org/10.3390/ijerph20032226
Díaz-Jiménez, J., Sánchez-Sánchez, E., Ordoñez, F. J., Rosety, I., Díaz, A. J., Rosety-Rodriguez, M., Rosety, M. Á., & Brenes, F. (2021). Impact of Probiotics on the Performance of Endurance Athletes: A Systematic Review. Int. J. Environ. Res. Public Health.
Giron, M., Thomas, M., Dardevet, D., Chassard, C., & Savary‐Auzeloux, I. (2022). Gut microbes and muscle function: Can probiotics make our muscles stronger? Journal of Cachexia, Sarcopenia and Muscle, 13(3), 1460-1476. https://doi.org/10.1002/jcsm.12964
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
Huang, W.-C., Lee, M.-C., Lee, C.-C., Ng, K.-S., Hsu, Y.-J., Tsai, T.-Y., Young, S.-L., Lin, J.-S., & Huang, C.-C. (2019a). Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients, 11(11), 2836. https://doi.org/10.3390/nu11112836
Huang, W.-C., Lee, M.-C., Lee, C.-C., Ng, K.-S., Hsu, Y.-J., Tsai, T.-Y., Young, S.-L., Lin, J.-S., & Huang, C.-C. (2019b). Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans.
Huang, W.-C., Pan, C.-H., Wei, C.-C., & Huang, H.-Y. (2020). Lactobacillus plantarum PS128 Improves Physiological Adaptation and Performance in Triathletes through Gut Microbiota Modulation. Nutrients, 12(8), 2315. https://doi.org/10.3390/nu12082315
Hughes, R. L. (2020). A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Frontiers in Nutrition, 6, 191. https://doi.org/10.3389/fnut.2019.00191
Lee, C.-C., Liao, Y.-C., Lee, M.-C., Cheng, Y.-C., Chiou, S.-Y., Lin, J.-S., Huang, C.-C., & Watanabe, K. (2022). Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms, 10(11), 2181. https://doi.org/10.3390/microorganisms10112181
Lee, M.-C., Hsu, Y.-J., Ho, H., Kuo, Y., Lin, W.-Y., Tsai, S.-Y., Chen, W.-L., Lin, C.-L., & Huang, C.-C. (2021). Effectiveness of human-origin Lactobacillus plantarum PL-02 in improving muscle mass, exercise performance and anti-fatigue. Scientific Reports, 11(1), 19469. https://doi.org/10.1038/s41598-021-98958-x
Mills, S., Candow, D. G., Forbes, S. C., Neary, J. P., Ormsbee, M. J., & Antonio, J. (2020). Effects of Creatine Supplementation during Resistance Training Sessions in Physically Active Young Adults. Nutrients, 12(6), 1880. https://doi.org/10.3390/nu12061880
Nagpal, R., Kumar, A., Kumar, M., Behare, P. V., Jain, S., & Yadav, H. (2012). Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiology Letters, 334(1), 1-15. https://doi.org/10.1111/j.1574-6968.2012.02593.x
Ohland, C. L., & MacNaughton, W. K. (2010). Probiotic bacteria and intestinal epithelial barrier function. 298.
Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. (2019). Mechanisms of action of probiotics. 10, S49–S66.
Powers, S. K., & Jackson, M. J. (2008). Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiological Reviews, 88(4), 1243-1276. https://doi.org/10.1152/physrev.00031.2007
Probiotics, gut microbiota and health. (2014). Médecine et Maladies Infectieuses.
Sivamaruthi, Kesika, & Chaiyasut. (2019). Effect of Probiotics Supplementations on Health Status of Athletes. International Journal of Environmental Research and Public Health, 16(22), 4469. https://doi.org/10.3390/ijerph16224469
Żółkiewicz, J., Marzec, A., Ruszczyński, M., & Feleszko, W. (2020). Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Mónica Alonso Guadaño

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.









