Effects of different strains of Lactiplantibacillus plantarum on athletic performance: A narrative review.

Authors

  • Mónica Alonso Guadaño Universidad Europea de Madrid

DOI:

https://doi.org/10.17561/jump.n12.9652

Keywords:

body composition, probiotics, fatigue, muscle mass, excercise

Abstract

The species Lactiplantibacillus plantarum belongs to a genus of gram-positive lactic acid bacteria that has aroused interest in the scientific community, due to its various beneficial biological effects, given its probiotic role. The present work compiles the studies carried out since 2019 in humans, on the influence of this probiotic on sports performance, muscle fatigue and body composition. After searching PubMed, SCOPUS, Google Scholar, Scielo and Chocrane databases, search “Lactobacillus plantarum”, “Lactiplantibacillus plantarum”, “fatigue”, “excercise”, “probiotics” and “muscle mass”, five studies were selected. The results show clear evidence of the potential of the use of this probiotic in sports. Some of the most relevant results were the improvement of sports performance, improving exhaustion time at 85% of VO2max, serum reduction of fatigue biomarkers and a healthier body composition. Therefore, the future use of L. plantarum as an ergogenic supplement for performance and fatigue improvement could be considered, specifically for its physiological adaptation effects.

References

Axling, U., Önning, G., Combs, M. A., Bogale, A., Högström, M., & Svensson, M. (2020). The Effect of Lactobacillus plantarum 299v on Iron Status and Physical Performance in Female Iron-Deficient Athletes: A Randomized Controlled Trial. Nutrients, 12(5), 1279. https://doi.org/10.3390/nu12051279

Chen, Y.-M., Wei, L., Chiu, Y.-S., Hsu, Y.-J., Tsai, T.-Y., Wang, M.-F., & Huang, C.-C. (2016a). Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8(4), 205. https://doi.org/10.3390/nu8040205

Chen, Y.-M., Wei, L., Chiu, Y.-S., Hsu, Y.-J., Tsai, T.-Y., Wang, M.-F., & Huang, C.-C. (2016b). Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8(4), 205. https://doi.org/10.3390/nu8040205

Conterno, L., Fava, F., Viola, R., & Tuohy, K. M. (2011). Obesity and the gut microbiota: Does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes & Nutrition, 6(3), 241-260. https://doi.org/10.1007/s12263-011-0230-1

De Paiva, A. K. F., De Oliveira, E. P., Mancini, L., Paoli, A., & Mota, J. F. (2023). Effects of probiotic supplementation on performance of resistance and aerobic exercises: A systematic review. Nutrition Reviews, 81(2), 153-167. https://doi.org/10.1093/nutrit/nuac046

Di Dio, M., Calella, P., Pelullo, C. P., Liguori, F., Di Onofrio, V., Gallè, F., & Liguori, G. (2023). Effects of Probiotic Supplementation on Sports Performance and Performance-Related Features in Athletes: A Systematic Review. International Journal of Environmental Research and Public Health, 20(3), 2226. https://doi.org/10.3390/ijerph20032226

Díaz-Jiménez, J., Sánchez-Sánchez, E., Ordoñez, F. J., Rosety, I., Díaz, A. J., Rosety-Rodriguez, M., Rosety, M. Á., & Brenes, F. (2021). Impact of Probiotics on the Performance of Endurance Athletes: A Systematic Review. Int. J. Environ. Res. Public Health.

Giron, M., Thomas, M., Dardevet, D., Chassard, C., & Savary‐Auzeloux, I. (2022). Gut microbes and muscle function: Can probiotics make our muscles stronger? Journal of Cachexia, Sarcopenia and Muscle, 13(3), 1460-1476. https://doi.org/10.1002/jcsm.12964

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66

Huang, W.-C., Lee, M.-C., Lee, C.-C., Ng, K.-S., Hsu, Y.-J., Tsai, T.-Y., Young, S.-L., Lin, J.-S., & Huang, C.-C. (2019a). Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients, 11(11), 2836. https://doi.org/10.3390/nu11112836

Huang, W.-C., Lee, M.-C., Lee, C.-C., Ng, K.-S., Hsu, Y.-J., Tsai, T.-Y., Young, S.-L., Lin, J.-S., & Huang, C.-C. (2019b). Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans.

Huang, W.-C., Pan, C.-H., Wei, C.-C., & Huang, H.-Y. (2020). Lactobacillus plantarum PS128 Improves Physiological Adaptation and Performance in Triathletes through Gut Microbiota Modulation. Nutrients, 12(8), 2315. https://doi.org/10.3390/nu12082315

Hughes, R. L. (2020). A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Frontiers in Nutrition, 6, 191. https://doi.org/10.3389/fnut.2019.00191

Lee, C.-C., Liao, Y.-C., Lee, M.-C., Cheng, Y.-C., Chiou, S.-Y., Lin, J.-S., Huang, C.-C., & Watanabe, K. (2022). Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms, 10(11), 2181. https://doi.org/10.3390/microorganisms10112181

Lee, M.-C., Hsu, Y.-J., Ho, H., Kuo, Y., Lin, W.-Y., Tsai, S.-Y., Chen, W.-L., Lin, C.-L., & Huang, C.-C. (2021). Effectiveness of human-origin Lactobacillus plantarum PL-02 in improving muscle mass, exercise performance and anti-fatigue. Scientific Reports, 11(1), 19469. https://doi.org/10.1038/s41598-021-98958-x

Mills, S., Candow, D. G., Forbes, S. C., Neary, J. P., Ormsbee, M. J., & Antonio, J. (2020). Effects of Creatine Supplementation during Resistance Training Sessions in Physically Active Young Adults. Nutrients, 12(6), 1880. https://doi.org/10.3390/nu12061880

Nagpal, R., Kumar, A., Kumar, M., Behare, P. V., Jain, S., & Yadav, H. (2012). Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiology Letters, 334(1), 1-15. https://doi.org/10.1111/j.1574-6968.2012.02593.x

Ohland, C. L., & MacNaughton, W. K. (2010). Probiotic bacteria and intestinal epithelial barrier function. 298.

Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. (2019). Mechanisms of action of probiotics. 10, S49–S66.

Powers, S. K., & Jackson, M. J. (2008). Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiological Reviews, 88(4), 1243-1276. https://doi.org/10.1152/physrev.00031.2007

Probiotics, gut microbiota and health. (2014). Médecine et Maladies Infectieuses.

Sivamaruthi, Kesika, & Chaiyasut. (2019). Effect of Probiotics Supplementations on Health Status of Athletes. International Journal of Environmental Research and Public Health, 16(22), 4469. https://doi.org/10.3390/ijerph16224469

Żółkiewicz, J., Marzec, A., Ruszczyński, M., & Feleszko, W. (2020). Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189

Published

2025-12-31

Issue

Section

Review articles

How to Cite

Alonso Guadaño, M. (2025). Effects of different strains of Lactiplantibacillus plantarum on athletic performance: A narrative review. JUMP, 12, e9652. https://doi.org/10.17561/jump.n12.9652