Aceptación de implantes tecnológicos con fines no médicos en nativos digitales: resultados con PLS-SEM y análisis de condición necesaria

Autores/as

  • Jorge de Andres-Sanchez Universidad Rovira i Virgili. Social and Business Research Lab.
  • Mario Arias-Oliva Universidad Complutense de Madrid
  • Mar Souto-Romero Universidad Rey Juan Carlos

DOI:

https://doi.org/10.17561/ree.n2.2025.8759

Palabras clave:

tecnología implantable, tecnología cíborg, interacción hombre-computadora, body-hacking, modelo de aceptación de la tecnología, modelado de ecuaciones estructurales con mínimos cuadrados parciales, análisis de condición necesaria

Resumen

Este estudio analiza los factores que influyen en la aceptación de implantes tecnológicos (ITs) con fines no médicos entre nativos digitales. Se propone un modelo basado en el marco del modelo de aceptación tecnológica de Davis, ampliado con tres variables exógenas: motivación hedónica, influencia social y percepción de riesgo. Con una muestra de 257 nativos digitales, se aplicaron ecuaciones estructurales con mínimos cuadrados parciales y análisis de condición necesaria. El modelo muestra un ajuste adecuado, con un coeficiente de determinación cercano al 70% y una capacidad predictiva aceptable. Todos los efectos totales sobre la intención de uso son significativos y positivos, salvo los relacionados con el riesgo percibido. La motivación hedónica es el factor más influyente, seguida de la facilidad de uso percibida, la utilidad percibida y las normas subjetivas. El análisis de condición necesaria revela que las tres primeras variables son condiciones necesarias para la aceptación, siendo la facilidad de uso la que presenta mayor tamaño del efecto. Este trabajo amplía la limitada literatura sobre aceptación de ITs, subrayando el papel central de la motivación hedónica. Los hallazgos tienen implicaciones relevantes para la industria: la intención de uso de estos dispositivos apenas supera una puntuación de 3 sobre 10. Para mejorar su adopción, los ITs deben superar umbrales críticos en utilidad percibida, facilidad de uso y atractivo hedónico. Asimismo, una percepción social más favorable puede incrementar su aceptación, siempre que se cumplan los requisitos mínimos en los tres factores clave.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Agárdi, I., Alt, M. (2024). Do digital natives use mobile payment differently than digital immigrants? A comparative study between generation X and Z. Electronic Commerce Research 24, 1463–1490. https://doi.org/10.1007/s10660-022-09537-9

Ahadzadeh, A. S., Ong, F. S., Deng, R., y Ali, S., R (2023). Unravelling the relationship between competitiveness trait and intention to use memory implants: The moderating roles of moral equity, egoism, and utilitarianism. International Journal of Human–Computer Interaction, 1–15. https://doi.org/10.1080/10447318.2023.2291621

Ahadzadeh, A. S., Ong, F. S., y Veeraiah, C. (2024a). The influence of competitiveness trait on attitudes toward memory implants: exploring the mediating role of perfectionism discrepancy. Current Psychology, 1-12. https://doi.org/10.1007/s12144-024-05962-1

Ahadzadeh, A. S., Wu, S. L., Lee, K. F., Ong, F. S., y Deng, R. (2024b). My perfectionism drives me to be a cyborg: moderating role of internal locus of control on propensity towards memory implant. Behaviour and Information Technology, 43(5), 862–875. https://doi.org/10.1080/0144929X.2023.2190821

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50, 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Akçayır, M., Dündar, H., y Akçayır, G. (2016). What makes you a digital native? Is it enough to be born after 1980? Computers in Human Behavior, 60, 435–440. https://doi.org/10.1016/j.chb.2016.02.089

Alruthaya, A., Nguyen, T. T., y Lokuge, S. (2021). The application of digital technology and the learning characteristics of Generation Z in higher education. arXiv preprint arXiv:2111.05991. https://doi.org/10.48550/arXiv.2111.05991

Amaya Velasco, H. O. (2023). Hackear los cuerpos. Una virtualización de lo humano [Hacking the bodies. A virtualization of the human]. Desde el Sur, 15(2), 1-25. https://dx.doi.org/10.21142/e0017

Andres-Sanchez, J., Almahameed, A. A., Arias-Oliva, M. y Pelegrin-Borondo, J. (2022). Correlational and Configurational Analysis of Factors Influencing Potential Patients’ Attitudes toward Surgical Robots: A Study in the Jordan University Community. Mathematics, 10(22), 4319. https://doi.org/10.3390/math10224319

Andres-Sanchez, J., Arias-Oliva, M. y Pelegrin-Borondo, J. (2021). The influence of ethical judgements on acceptance and non-acceptance of wearables and insideables: Fuzzy set qualitative comparative analysis. Technology in Society, 67, 101689. https://doi.org/10.1016/j.techsoc.2021.101689

Andrés-Sánchez, J. y Belzunegui-Eraso, Á. (2023). Spanish Workers’ Judgement of Telecommuting during the COVID-19 Pandemic: A Mixed-Method Evaluation. Information, 14(9), 488. https://doi.org/10.3390/info14090488

Arias-Oliva, M., Pelegrín-Borondo, J., Murata, K., y Gauttier, S. (2021). Conventional vs. disruptive products: a wearables and insideables acceptance analysis: Understanding emerging technological products. Technology Analysis and Strategic Management, 35(12), 1663–1675. https://doi.org/10.1080/09537325.2021.2013462

Arnold, M. J., y Reynolds, K. E. (2003). Hedonic shopping motivations. Journal of Retailing, 79(2), 77-95. https://doi.org/10.1016/S0022-4359(03)00007-1

Åsberg, C. (2024). Promises of Cyborgs: Feminist Practices of Posthumanities (Against the Nested Crises of the Anthropocene). NORA-Nordic Journal of Feminist and Gender Research, 1-21. https://doi.org/10.1080/08038740.2023.2294194

Barresi, G., Ayaz, H., Seigneur, J. M., Di Pino, G., y Bertolaso, M. (2024). Augmenting human experience and performance through interaction technologies. Frontiers in Psychology, 15, 1356658. https://doi.org/10.3389/fpsyg.2024.1356658

Benítez, J., Henseler, J., Castillo, A., y Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information and Management, 57(2), 103168. https://doi.org/10.1016/j.im.2019.05.003

Bisquerra Alzina, R., y Pérez Escoda, N. (2015). ¿Pueden las escalas Likert aumentar en sensibilidad? REIRE, Revista d’Innovació i Recerca en Educació, 8(2), 129-147. https://doi.org/10.1344/reire2015.8.2828

Cashdan, E. (1998). Are men more competitive than women? British Journal of Social Psychology, 37(2), 213-229. https://doi.org/10.1111/j.2044-8309.1998.tb01166.x

Chaudhry, B. M., Shafeie, S. y Mohamed, M. (2023). Theoretical Models for Acceptance of Human Implantable Technologies: A Narrative Review. Informatics, 10(3), 69. https://doi.org/10.3390/informatics10030069

Chiu, W., Oh, G. E. y Cho, H. (2021). Factors influencing consumers’ adoption of wearable technology: A systematic review and meta-analysis. International Journal of Information Technology and Decision Making, 20(3), 933-958. https://doi.org/10.1142/S0219622021500206

Conroy, R. M. (2018). The RCSI sample size handbook. A rough guide. https://doi.org/ 10.13140/RG.2.2.30497.51043

Dash, G., y Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092. https://doi.org/10.1016/j.techfore.2021.121092

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319–340. https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P. y Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. http://www.jstor.org/stable/2632151

Dul, J. (2016). Necessary condition analysis (NCA) logic and methodology of “necessary but not sufficient” causality. Organizational Research Methods, 19(1), 10-52. https://doi.org/10.1177/1094428115584005

Faqih, K. M. (2016). An empirical analysis of factors predicting the behavioral intention to adopt Internet shopping technology among non-shoppers in a developing country context: Does gender matter? Journal of Retailing and Consumer Service, 30, 140–164. https://doi.org/10.1016/j.jretconser.2016.01.016

Faul, F., Erdfelder, E., Buchner, A., y Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149-1160. https://doi.org/10.3758/BRM.41.4.1149

Fox, S. (2018). Cyborgs, robots and society: Implications for the future of society from human enhancement with in-the-body technologies. Technologies, 6(2), 50. https://doi.org/10.3390/technologies6020050

Frederick, D. A., Lever, J., y Peplau, L. A. (2007). Interest in cosmetic surgery and body image: Views of men and women across the lifespan. Plastic and Reconstructive Surgery, 120(5), 1407-1415. https://doi.org/10.1097/01.prs.0000279375.26157.64

Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., y Babin, B. J. (2016). Common methods variance detection in business research. Journal of Business Research, 69(8), 3192-3198. https://doi.org/10.1016/j.jbusres.2015.12.008

Gangadharbatla, H. (2020). Biohacking: An exploratory study to understand the factors influencing the adoption of embedded technologies within the human body. Heliyon, 6(5), e03931. https://doi.org/10.1016/j.heliyon.2020.e03931

Garry, T. y Harwood, T. (2019). Cyborgs as frontline service employees: a research agenda. Journal of Service Theory and Practice, 29(4), 415-437. https://doi.org/10.1108/JSTP-11-2018-0241

Gauttier, S. (2019). ‘I've got you under my skin’–The role of ethical consideration in the (non-) acceptance of insideables in the workplace. Technology in Society, 56, 93-108. https://doi.org/10.1016/j.techsoc.2018.09.008

Gidron, Y. (2013). Perceived Risk. In: Gellman, M.D., Turner, J.R. (eds) Encyclopedia of Behavioral Medicine. Springer. https://doi.org/10.1007/978-1-4419-1005-9_1554

Giger, J. C. y Gaspar, R. (2019). A look into future risks: A psychosocial theoretical framework for investigating the intention to practice body hacking. Human Behavior and Emerging Technologies, 1(4), 306-316. https://doi.org/10.1002/hbe2.176

Ha, C. (2024). Postphenomenology, Artificial Intelligence, and Cyborg Intentionality: Exploring Verbeek's Influence in Diemut Strebe's Transformative Art Installations. TECHART: Journal of Arts and Imaging Science, 11(2), 22-29. https://doi.org/10.15323/techart.2024.5.11.2.22

Hair, J.F., Risher, J.J., Sarstedt, M. y Ringle, C.M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203

Heffernan, K. J., Vetere, F., y Chang, S. (2021). Insertables: Beyond Cyborgs and Augmentation to Convenience and Amenity. In: Dingler, T., Niforatos, E. (eds) Technology-Augmented Perception and Cognition. 185-227. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30457-7_6

Heffernan, K. J., Vetere, F., y Chang, S. (2022). Socio-technical context for insertable devices. Frontiers in Psychology, 13, 991345. https://doi.org/10.3389/fpsyg.2022.991345

Hsu, C. L., y Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information and Management, 41(7), 853-868. https://doi.org/10.1016/j.im.2003.08.014

Kadlecová, J. (2020). Body-hacking: On the Relationship between People and Material Entities in the Practice of Technological Body Modifications. Historická Sociologie, 12(1), 49-63. https://doi.org/10.14712/23363525.2020.4

Kanga, Z., Dyer, M., Rowley, C. y Packham, J. (2024). Reflections on Cyborg Collaborations: Cross-Disciplinary Collaborative Practice in Technologically-Focused Contemporary Music. Tempo, 78(308), 55-69. https://doi.org/10.1017/S0040298223000967

Klemenc, L., Vrhovec, S. y Mihelič, A. (2021). Zaznavanje tveganj pri sprejemanju tehnoloških vsadkov [Perceiving Risks in Accepting Technological Implants.]. Electrotechnical Review/Elektrotehniski Vestnik, 88(4), 174–182. http://www.dlib.si/?URN=URN:NBN:SI:DOC-FZ57O2J1

Kock, N., y Hadaya, P. (2018). Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods. Information Systems Journal, 28(1), 227-261. https://doi.org/10.1111/isj.12131

Kock, N., y Lynn, G. S. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information Systems, 13(7), 546-580. https://doi.org/10.17705/1jais.00302

Komkaite, A., Lavrinovica, L., Vraka, M., y Skov, M. B. (2019, May). Underneath the skin: An analysis of youtube videos to understand insertable device interaction. In Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1-12). https://doi.org/10.1145/3290605.3300444

Kuszko, J. (2021). Will We All Have To BecomeBiologically Enhanced Superhumans? https://medicalfuturist.com/superhumans-2021/

Liengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., y Ringle, C. M. (2021). Prediction: coveted, yet forsaken? Introducing a cross‐validated predictive ability test in partial least squares path modeling. Decision Sciences, 52(2), 362-392. https://doi.org/10.1111/deci.12445

Ministerio de Ciencia, Innovación y Universidades (2024). Número de Estudiantes en las Universidades Españolas. https://www.universidades.gob.es/estadistica-de-estudiantes/

Murata, K., Arias-Oliva, M. y Pelegrín-Borondo, J. (2019). Cross-cultural study about cyborg market acceptance: Japan versus Spain. European Research on Management and Business Economics, 25(3), 129-137. https://doi.org/10.1016/j.iedeen.2019.07.003

Murata, K., Fukuta, Y., Orito, Y., Adams, A., Arias-Oliva, M. y Pelegrín-Borondo, J. (2018). Cyborg Athletes or Technodoping. In ETHICOMP (2018), 1-22. https://www.researchgate.net/profile/Kiyoshi-Murata-3/publication/327904976_Cyborg_Athletes_or_Technodoping_How_Far_Can_People_Become_Cyborgs_to_Play_Sports/links/5bac727ba6fdccd3cb7685cd/Cyborg-Athletes-or-Technodoping-How-Far-Can-People-Become-Cyborgs-to-Play-Sports.pdf

Olarte-Pascual, C., Pelegrín-Borondo, J., Reinares-Lara, E. y Arias-Oliva, M. (2021). From wearable to insideable: Is ethical judgment key to the acceptance of human capacity-enhancing intelligent technologies? Computers in Human Behavior, 114, 106559. https://doi.org/10.1016/j.chb.2020.106559

Papakonstantinou, E., Mitsis, T., Dragoumani, K., Bacopoulou, F., Megalooikonomou, V., Chrousos, G. P. y Vlachakis, D. (2022). The medical cyborg concept. EMBnet Journal, 27, e1005. https://doi.org/10.14806/ej.27.0.1005

Pedersen, H. y S. Söderström (2023). The creation of cyborgs within a socially constructed understanding of disability and assistive activity technology use. Disability y Society, 39(18),1-23. https://doi.org/10.1080/09687599.2023.2173051

Pelegrín-Borondo, J., Arias-Oliva, M., Murata, K. y Souto-Romero, M. (2020). Does ethical judgment determine the decision to become a cyborg? Influence of Ethical Judgment on the Cyborg Market. Journal of Business Ethics, 161(1), 5-17. https://doi.org/10.1007/s10551-018-3970-7

Pelegrin-Borondo, J., Reinares-Lara, E. y Olarte-Pascual, C. (2017). Assessing the acceptance of technological implants (the cyborg): Evidences and challenges. Computers in Human Behavior, 70, 104-112. https://doi.org/10.1016/j.chb.2016.12.063

Pelegrín-Borondo, J., Reinares-Lara, E., Olarte-Pascual, C. y Garcia-Sierra, M. (2016). Assessing the moderating effect of the end user in consumer behavior: the acceptance of technological implants to increase innate human capacities. Frontiers in Psychology, 7, 132. https://doi.org/10.3389/fpsyg.2016.00132

Peng, C., Xi, N., Zhao, H. y Hamari, J. (2022). Acceptance of Wearable Technology: A Meta-Analysis. Proceedings of the 55th Hawaii International Conference on System Sciences, 5101-5110. Honolulu: HICSS Conference Office University of Hawaii at Manoa. https://doi.org/10.24251/HICSS.2022.621

Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., y Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.879

Podsakoff, P. M., Podsakoff, N. P., Williams, L. J., Huang, C., y Yang, J. (2024). Common method bias: It's bad, it's complex, it's widespread, and it's not easy to fix. Annual Review of Organizational Psychology and Organizational Behavior, 11(1), 17-61. https://doi.org/10.1146/annurev-orgpsych-110721-040030

Ramoğlu, M. (2019). Cyborg-Computer Interaction: Designing New Senses, The Design Journal, 22(supl), 1215-1225. https://doi.org/10.1080/14606925.2019.1594986

Reichel, P., Bassler, C. T., y Spörrle, M. (2024). Embracing the enhanced self now and in the future: The impact of temporal focus, age, and sex on cyborg products use intention. Personality and Individual Differences, 225, 112665. https://doi.org/10.1016/j.paid.2024.112665

Reinares-Lara, E., Olarte-Pascual, C. y Pelegrín-Borondo, J. (2018). Do you want to be a cyborg? The moderating effect of ethics on neural implant acceptance. Computers in Human Behavior, 85, 43-53. https://doi.org/10.1016/j.chb.2018.03.032

Reinares-Lara, E., Olarte‐Pascual, C., Pelegrín‐Borondo, J. y Pino, G. (2016). Nanoimplants that enhance human capabilities: A cognitive‐affective approach to assess individuals’ acceptance of this controversial technology. Psychology and Marketing, 33(9), 704-712. https://doi.org/10.1002/mar.20911

Richter, N. F., Schubring, S., Hauff, S., Ringle, C. M., y Sarstedt, M. (2020). When predictors of outcomes are necessary: Guidelines for the combined use of PLS-SEM and NCA. Industrial management y data systems, 120(12), 2243-2267. https://doi.org/10.1108/IMDS-11-2019-0638

Royal Society. (2019). iHuman: blurring lines between mind and machine. Royal Society. https://royalsociety.org/-/media/policy/projects/ihuman/report-neural-interfaces.pdf

Sabogal-Alfaro, G., Mejía-Perdigón, M. A., Cataldo, A. y Carvajal, K. (2021). Determinants of the intention to use non-medical insertable digital devices: The case of Chile and Colombia. Telematics and Informatics, 60, 101576. https://doi.org/10.1016/j.tele.2021.101576

Shafeie, S., Chaudhry, B. M., y Mohamed, M. (2022). Modeling subcutaneous microchip implant acceptance in the general population: A cross-sectional survey about concerns and expectations. Informatics, 9(24), https://doi.org/10.3390/informatics9010024

Sharma, P. N., Liengaard, B. D., Hair, J. F., Sarstedt, M. y Ringle, C. M. (2023). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT, European Journal of Marketing, 57(6), 1662-1677. https://doi.org/10.1108/EJM-08-2020-0636

Shawver, T. J. y Sennetti, J. T. (2009). Measuring ethical sensitivity and evaluation. Journal of Business Ethics, 88, 663-678. https://doi.org/10.1007/s10551-008-9973-z

Sisto, W. N. (2023). Cyborg Enhancements: Sergius Bulgakov and His Sophiological Perspective. Irish Theological Quarterly, 88(3), 201-226. https://doi.org/10.1177/00211400231179

Talukder, M. S., Sorwar, G., Bao, Y., Ahmed, J. U. y Palash, M. A. S. (2020). Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-Neural Network approach. Technological Forecasting and Social Change, 150, 119793. https://doi.org/10.1016/j.techfore.2019.119793

Toker, K., Afacan Fındıklı, M., Gözübol, Z. İ. y Görener, A. (2023). To be a cyborg or not: exploring the mechanisms between digital literacy and neural implant acceptance, Kybernetes, ahead-of-print. https://doi.org/10.1108/K-07-2023-1297

Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695-703. https://doi.org/10.2307/25148660

Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model, Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872

Venkatesh, V., y Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V., y Davis F. D (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B. y Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y. y Xu, X. (2012). Consumer Acceptance and use of Information Technology: Extending the Unified Theory of Acceptance and use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412

Wang, H. Y., Sigerson, L., y Cheng, C. (2019). Digital nativity and information technology addiction: Age cohort versus individual difference approaches. Computers in Human Behavior, 90, 1-9. https://doi.org/10.1016/j.chb.2018.08.031

Warwick, K. (2003). Cyborg morals, cyborg values, cyborg ethics. Ethics and Information Technology, 5, 131–137 https://doi.org/10.1023/B:ETIN.0000006870.65865.cf

Warwick, K. (2014). The cyborg reution. Nanoethics, 8, 263-273. https://doi.org/10.1007/s11569-014-0212-z

Warwick, K. (2020). Superhuman enhancements via implants: Beyond the human mind. Philosophies, 5(3), 14. https://doi.org/10.3390/philosophies5030014

Werber, B., Baggia, A., y Žnidaršič, A. (2018). Factors affecting the intentions to use RFID subcutaneous microchip implants for healthcare purposes. Organizacija, 51(2), 121-133. https://doi.org/10.2478/orga-2018-0010

Publicado

2025-07-31

Número

Sección

TRIBUNA

Cómo citar

de Andres-Sanchez, J., Arias-Oliva, M., & Souto-Romero, M. (2025). Aceptación de implantes tecnológicos con fines no médicos en nativos digitales: resultados con PLS-SEM y análisis de condición necesaria. Revista De Estudios Empresariales. Segunda Época, 2, 33-65. https://doi.org/10.17561/ree.n2.2025.8759