Fabricación con cero defectos y activos digitales en la transformación de la fabricación mediante nuevas tecnologías de la información: revisión de la literatura
DOI:
https://doi.org/10.17561/ree.n1.2025.9134Palabras clave:
Fabricación Cero Defectos, Activos Digitales, Industria 4.0, Ciclo de vidaResumen
La Industria 4.0, impulsada por la transformación digital, ha revolucionado la fabricación al introducir tecnologías que crean “fábricas inteligentes”. Estas fábricas mejoran la competitividad a través de la automatización y la estrategia de “Fabricación Cero Defectos” para optimizar la producción y evitar fallos en los productos. Para ello, hay que tener presente los activos digitales que participan en dicha estrategia y su arquitectura. En el presente artículo se revisa la literatura sobre la estrategia de cero defectos en diferentes etapas del ciclo de vida, considerando diversos activos digitales y su impacto en la industria.
Descargas
Referencias
Afolaranmi, S. O., Drakoulelis, M., Filios, G., Melchiorre, C., Nikoletseas, S., Panagiotou, S. H., & Timpilis, K. (2023). zPasteurAIzer: An AI-Enabled Solution for Product Quality Monitoring in Tunnel Pasteurization Machines. Machines, 11(2). https://doi.org/10.3390/machines11020191
Akdil, K. Y., Ustundag, A., & Cevikcan, E. (2018). Industry 4.0: Managing The Digital Transformation. https://doi.org/10.1007/978-3-319-57870-5_4
Alsaadi, N. (2024). Roadblocks in Integrating Lean Six Sigma and Industry 4.0 in Small and Medium Enterprises. Systems, 12(4). https://doi.org/10.3390/systems12040125
Amadori, F., Bardani, M., Bernasconi, E., Cappelletti, F., Catarci, T., Drudi, G., Ferretti, M., Foschini, L., Galli, P., Germani, M., Grosso, G., Leotta, F., Mathew, J. G., Manuguerra, L., Mariucci, N., Mecella, M., Monti, F., Pierini, F., & Rossi, M. (2022). Electrospindle 4.0: Towards Zero Defect Manufacturing of Spindles. CEUR Workshop Proceedings, 3144. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131234139&partnerID=40&md5=9c0b78a353b7f0d4c7d678b7775f519e
Anaya, V., Kirchberger, D., Pardo, J., Salgado, Ó., & Fraile, F. (2020). A technical approach to achieve zero defects manufacturing process in the ZDMP project. CEUR Workshop Proceedings, 2900. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109658993&partnerID=40&md5=713406e19106fc18d9b1d494d9661449
Arévalo-Ascanio, J. G., Bayona-Trillos, R. A., & Rico-Bautista, D. W. (2015). Responsabilidad social empresarial e innovación: Una mirada desde las tecnologías de la información y comunicación en organizaciones. Clío América, 9(18), 180. https://doi.org/10.21676/23897848.1535
Belloni, M., Bilancia, P., Raffaeli, R., Peruzzini, M., & Pellicciari, M. (2021). Design of a test rig for tuning and optimization of high dynamics servo-mechanisms employed in manufacturing automation. Procedia Manufacturing, 55(C), 48–55. https://doi.org/10.1016/j.promfg.2021.10.008
Bortolini, M., Ferrari, E., Gamberi, M., Pilati, F., & Faccio, M. (2017). Assembly system design in the Industry 4.0 era: a general framework. IFAC-PapersOnLine, 50(1), 5700–5705. https://doi.org/10.1016/j.ifacol.2017.08.1121
Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): An analysis framework. Computers in Industry, 101(December 2017), 1–12. https://doi.org/10.1016/j.compind.2018.04.015
Boza, A., Alarcón, F., Perez, D., & Gómez-Gasquet, P. (2018). Industry 4.0 From the Supply Chain Perspective. 331–351. https://doi.org/10.4018/978-1-5225-4936-9.ch014
Brintrup, A., Kosasih, E., Schaffer, P., Zheng, G., Demirel, G., & MacCarthy, B. L. (2024). Digital supply chain surveillance using artificial intelligence: definitions, opportunities and risks. International Journal of Production Research, 62(13), 4674–4695. https://doi.org/10.1080/00207543.2023.2270719
Butt, J. (2020). A strategic roadmap for the manufacturing industry to implement industry 4.0. Designs, 4(2), 1–31. https://doi.org/10.3390/designs4020011
Caiazzo, B., Murino, T., Petrillo, A., Piccirillo, G., & Santini, S. (2023). An IoT-based and cloud-assisted AI-driven monitoring platform for smart manufacturing: design architecture and experimental validation. Journal of Manufacturing Technology Management, 34(4), 507–534. https://doi.org/10.1108/JMTM-02-2022-0092
Camarinha-Matos, L. M., Rocha, A. D., & Graça, P. (2024). Collaborative approaches in sustainable and resilient manufacturing. Journal of Intelligent Manufacturing, 35(2), 499–519. https://doi.org/10.1007/s10845-022-02060-6
Carlin, H. M., Goodall, P. A., Young, R. I. M., & West, A. A. (2024). An interactive framework to support decision-making for Digital Twin design. Journal of Industrial Information Integration, 41. https://doi.org/10.1016/j.jii.2024.100639
Cattaneo, L., Rossi, M., Negri, E., Powell, D., & Terzi, S. (2017). Lean thinking in the digital Era. IFIP Advances in Information and Communication Technology, 517, 371–381. https://doi.org/10.1007/978-3-319-72905-3_33
Chew, K. M., & Lee, W. P. (2022). Product Life Cycle Data Management and Analytics in RAMI4.0 using the Manufacturing Chain Management Platform. The Journal of The Institution of Engineers, Malaysia, 82(3), 101–108. https://doi.org/10.54552/v82i3.120
Christou, I. T., Kefalakis, N., Soldatos, J. K., & Despotopoulou, A. M. (2022). End-to-end industrial IoT platform for Quality 4.0 applications. Computers in Industry, 137, 103591. https://doi.org/10.1016/j.compind.2021.103591
Cimino, A., Longo, F., Mirabelli, G., & Solina, V. (2024). A cyclic and holistic methodology to exploit the Supply Chain Digital Twin concept towards a more resilient and sustainable future. Cleaner Logistics and Supply Chain, 11. https://doi.org/10.1016/j.clscn.2024.100154
Copetti, T. S., Nilovic, M., Fieback, M., Gemmeke, T., Hamdioui, S., & Bolzani Poehls, L. M. (2022). Exploring an On-Chip Sensor to Detect Unique Faults in RRAMs. 2022 IEEE 23rd Latin American Test Symposium, LATS 2022. https://doi.org/10.1109/LATS57337.2022.9936991
Crosby, D. C. (2006). Quality is easy (pp. 58–62). QUALITY.
Danielle, C. (2020). What are RAMI 4.0 and asset administration shells in the context of Industry 4.0? https://www.motioncontroltips.com/what-are-rami40-and-asset-administration-shells-in-the-context-of-industry40/
del Val Roman, J. (2012). Industria 4.0. La Transformación Digital de la Industria Española. Coddiinforme, 120. http://coddii.org/wp-content/uploads/2016/10/Informe-CODDII-Industria-4.0.pdf
Dreyfus, P.-A., Pelissier, A., Psarommatis, F., & Kiritsis, D. (2022). Data-based model maintenance in the era of industry 4.0: A methodology. Journal of Manufacturing Systems, 63, 304–316.
Electro Industria. (2016). Arquitecturas de referencia RAMI 4.0 e IIRA (Vol. 4, Issue 3). http://marefateadyan.nashriyat.ir/node/150
Eleftheriadis, R. J., & Myklebust, O. (2020). The Importance of Key Performance Indicators that Can Contribute to Autonomous Quality Control. Lecture Notes in Electrical Engineering, 634 LNEE, 373–378. https://doi.org/10.1007/978-981-15-2341-0_46
Fraile, F., Montalvillo, L., Rodriguez, M. A., Navarro, H., & Ortiz, A. (2021). Multi-tenant data management in collaborative zero defect manufacturing. 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, 464–468. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488534
Fraile, F., Tagawa, T., Poler, R., & Ortiz, A. (2018). Trustworthy Industrial IoT Gateways for Interoperability Platforms and Ecosystems. IEEE Internet of Things Journal, 5(6), 4506–4514. https://doi.org/10.1109/JIOT.2018.2832041
Goecke, S. F., Seefeld, T., Tyralla, D., & Krug, A. (2019). Monitoring and control of the heat input in MAG-laser-hybrid welding of high strength steel in telescopic crane booms. IEEE International Conference on Automation Science and Engineering, 2019-Augus, 1744–1747. https://doi.org/10.1109/COASE.2019.8843219
Herranz, G., Antolínez, A., Escartín, J., Arregi, A., & Gerrikagoitia, J. K. (2019). Machine tools anomaly detection through nearly real-time data analysis. Journal of Manufacturing and Materials Processing, 3(4). https://doi.org/10.3390/jmmp3040097
Huang, Z., Angadi, V. C., Danishvar, M., Mousavi, A., & Li, M. (2019). Zero Defect Manufacturing of Microsemiconductors - An Application of Machine Learning and Artificial Intelligence. 2018 5th International Conference on Systems and Informatics, ICSAI 2018, 449–454. https://doi.org/10.1109/ICSAI.2018.8599292
Immerman, G., & Westrom, D. (2022). Digital manufacturing transformation (innovative business opportunities for manufacturers). Synchroinfo Journal, 8(6), 25–32. https://doi.org/10.36724/2664-066X-2022-8-6-25-32
Johansson, P. E., Bruch, J., Chirumalla, K., Osterman, C., & Stålberg, L. (2024). Integrating advanced digital technologies in existing lean-based production systems: analysis of paradoxes, imbalances and management strategies. International Journal of Operations and Production Management, 44(6), 1158–1191. https://doi.org/10.1108/IJOPM-05-2023-0434
Kang, S., Chun, I., & Kim, H. S. (2019). Design and Implementation of Runtime Verification Framework for Cyber-Physical Production Systems. Journal of Engineering (United Kingdom), 2019. https://doi.org/10.1155/2019/2875236
Konovalov, S. F., Podchezertsev, V. P., Mayorov, D. V., Ponomarev, Y. A., Sidorov, A. G., Park, H. W., Kwon, N. W., Lee, G. S., & Seo, J. B. (2010). Two-axis MEMS angular rate sensor with magnetoelectric feedback torques in excitation and measurement channels. Gyroscopy and Navigation, 1(4), 321–329. https://doi.org/10.1134/S2075108710040140
Konstantinidis, F. K., Kansizoglou, I., Tsintotas, K. A., Mouroutsos, S. G., & Gasteratos, A. (2021). The role of machine vision in industry 4.0: A textile manufacturing perspective. IST 2021 - IEEE International Conference on Imaging Systems and Techniques, Proceedings. https://doi.org/10.1109/IST50367.2021.9651459
Konstantinidis, F. K., Myrillas, N., Tsintotas, K. A., Mouroutsos, S. G., & Gasteratos, A. (2023). A technology maturity assessment framework for Industry 5.0 machine vision systems based on systematic literature review in automotive manufacturing. International Journal of Production Research. https://doi.org/10.1080/00207543.2023.2270588
Konstantopoulos, G., Koumoulos, E. P., & Charitidis, C. A. (2020). Classification of mechanism of reinforcement in the fiber-matrix interface: Application of Machine Learning on nanoindentation data. Materials and Design, 192. https://doi.org/10.1016/j.matdes.2020.108705
Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., & Van Brussel, H. (1999). Reconfigurable manufacturing systems. CIRP Annals - Manufacturing Technology, 48(2), 527–540. https://doi.org/10.1016/S0007-8506(07)63232-6
Kristiani, E., Wang, L. Y., Liu, J. C., Huang, C. K., Wei, S. J., & Yang, C. T. (2024). An Intelligent Thermal Compensation System Using Edge Computing for Machine Tools. Sensors, 24(8). https://doi.org/10.3390/s24082531
Leberruyer, N., Bruch, J., Ahlskog, M., & Afshar, S. (2023). Toward Zero Defect Manufacturing with the support of Artificial Intelligence—Insights from an industrial application. Computers in Industry, 147. https://doi.org/10.1016/j.compind.2023.103877
Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005
Maganha, I., Silva, C., & Ferreira, L. M. D. F. (2019). The layout design in reconfigurable manufacturing systems: a literature review. International Journal of Advanced Manufacturing Technology, 105(1–4), 683–700. https://doi.org/10.1007/s00170-019-04190-3
Martínez, S. S., Rico, S. I., Marchal, P. C., Gila, D. M. M., & Ortega, J. G. (2022). Zero Defect Manufacturing in the Food Industry: Virgin Olive Oil Production. Applied Sciences (Switzerland), 12(10). https://doi.org/10.3390/app12105184
Mateo-Casalí, M. Á., Gil, F. F., Boza, A., & Nazarenko, A. (2023). An industry maturity model for implementing Machine Learning operations in manufacturing. International Journal of Production Management and Engineering, 11(2), 179–186. https://doi.org/10.4995/ijpme.2023.19138
Meyers, B., Vangheluwe, H., Lietaert, P., Vanderhulst, G., Van Noten, J., Schaffers, M., Maes, D., & Gadeyne, K. (2024). Towards a knowledge graph framework for ad hoc analysis in manufacturing. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-023-02319-6
Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2021). Equipment Design Optimization Based on Digital Twin under the Framework of Zero-Defect Manufacturing. Procedia Computer Science, 180, 525–533. https://doi.org/10.1016/j.procs.2021.01.271
Muller Prof., G. (2008). Right sizing reference architectures; How to provide specific guidance with limited information. 18th Annual International Symposium of the International Council on Systems Engineering, INCOSE 2008, 1, 569–576. https://doi.org/10.1002/j.2334-5837.2008.tb00917.x
Nazarenko, A. A., Lopes, C., Ferreira, J., Usher, P., & Sarraipa, J. (2020). ZDMP core services and middleware. CEUR Workshop Proceedings, 2900. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109710951&partnerID=40&md5=4e40ebdff7a24867ab4b5a78b8afa75c
Nazarenko, A. A., Sarraipa, J., Camarinha-Matos, L. M., Grunewald, C., Dorchain, M., & Jardim-Goncalves, R. (2021). Analysis of relevant standards for industrial systems to support zero defects manufacturing process. In Journal of Industrial Information Integration (Vol. 23). Elsevier B.V. https://doi.org/10.1016/j.jii.2021.100214
Noura, M., Atiquzzaman, M., & Gaedke, M. (2019a). Interoperability in Internet of Things: Taxonomies and Open Challenges. Mobile Networks and Applications, 24(3), 796–809. https://doi.org/10.1007/s11036-018-1089-9
Papageorgiou, K., Theodosiou, T., Rapti, A., Papageorgiou, E. I., Dimitriou, N., Tzovaras, D., & Margetis, G. (2022). A systematic review on machine learning methods for root cause analysis towards zero-defect manufacturing. Frontiers in Manufacturing Technology, 2(October), 1–16. https://doi.org/10.3389/fmtec.2022.972712
Patil, R. S., Patil, R. V, Thikane, S. J., & Patil, P. M. (2019). Industry 4.0: Zero Defect Manufacturing (ZDM). 4(3), 12–16.
Pedone, G., & Mezgár, I. (2018). Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies. Computers in Industry, 100(May), 278–286. https://doi.org/10.1016/j.compind.2018.05.003
Pisching, M. A., Pessoa, M. A. O., Junqueira, F., dos Santos Filho, D. J., & Miyagi, P. E. (2018). An architecture based on RAMI 4.0 to discover equipment to process operations required by products. Computers and Industrial Engineering, 125(January), 574–591. https://doi.org/10.1016/j.cie.2017.12.029
Pistone, A., Canali, C., Gloriani, C., Leggieri, S., Guardiani, P., & Caldwell, D. G. (2019). Reconfigurable inspection robot for industrial applications. Procedia Manufacturing, 38, 597–604. https://doi.org/10.1016/j.promfg.2020.01.075
Plakhotnik, D., Curutiu, A., Zhulavskyi, A., Beudaert, X., Munoa, J., & Stautner, M. (2021). Framework for coupled digital twins in digital machining. MM Science Journal, 2021-Novem, 5093–5097. https://doi.org/10.17973/MMSJ.2021_11_2021158
Poehls, L. M. B., Fieback, M. C. R., Hoffmann-Eifert, S., Copetti, T., Brum, E., Menzel, S., Hamdioui, S., & Gemmeke, T. (2021). Review of Manufacturing Process Defects and Their Effects on Memristive Devices. Journal of Electronic Testing: Theory and Applications (JETTA), 37(4), 427–437. https://doi.org/10.1007/s10836-021-05968-8
Popkova, E. G., Ragulina, Y. V., & Bogoviz, A. V. (2018). Industry 4.0: Industrial Revolution of the 21st Century. In Studies in Systems, Decision and Control (Vol. 169). https://doi.org/10.1007/978-3-319-94310-7_6
Psarommatis, F. (2021). A generic methodology and a digital twin for zero defect manufacturing (ZDM) performance mapping towards design for ZDM. Journal of Manufacturing Systems, 59, 507–521. https://doi.org/10.1016/j.jmsy.2021.03.021
Psarommatis, F., Boujemaoui, A., & Kiritsis, D. (2020). A Computational Method for Identifying the Optimum Buffer Size in the Era of Zero Defect Manufacturing. IFIP Advances in Information and Communication Technology, 592 IFIP, 443–450. https://doi.org/10.1007/978-3-030-57997-5_51
Psarommatis, F., Dreyfus, P. A., & Kiritsis, D. (2021). The role of big data analytics in the context of modeling design and operation of manufacturing systems. In Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology (pp. 243–275). https://doi.org/10.1016/B978-0-12-823657-4.00012-9
Psarommatis, F., & May, G. (2024a). Digital Product Passport: A Pathway to Circularity and Sustainability in Modern Manufacturing. Sustainability (Switzerland), 16(1). https://doi.org/10.3390/su16010396
Psarommatis, F., & May, G. (2024b). Optimization of zero defect manufacturing strategies: A comparative study on simplified modeling approaches for enhanced efficiency and accuracy. Computers and Industrial Engineering, 187. https://doi.org/10.1016/j.cie.2023.109783
Psarommatis, F., May, G., Dreyfus, P. A., & Kiritsis, D. (2020). Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research. International Journal of Production Research, 58(1), 1–17. https://doi.org/10.1080/00207543.2019.1605228
Psarommatis, F., Prouvost, S., May, G., & Kiritsis, D. (2020). Product Quality Improvement Policies in Industry 4.0: Characteristics, Enabling Factors, Barriers, and Evolution Toward Zero Defect Manufacturing. Frontiers in Computer Science, 2(August), 1–15. https://doi.org/10.3389/fcomp.2020.00026
Reinpold, L. M., Wagner, L. P., Gehlhoff, F., Ramonat, M., Kilthau, M., Gill, M. S., Reif, J. T., Henkel, V., Scholz, L., & Fay, A. (2024). Systematic comparison of software agents and Digital Twins: differences, similarities, and synergies in industrial production. In Journal of Intelligent Manufacturing. Springer. https://doi.org/10.1007/s10845-023-02278-y
Serrano, J., Faustino, J., Adriano, D., Pereira, R., & da Silva, M. M. (2021). An it service management literature review: Challenges, benefits, opportunities and implementation practices. Information (Switzerland), 12(3). https://doi.org/10.3390/info12030111
Serrano-Ruiz, J. C., Mula, J., & Poler, R. (2022). Toward smart manufacturing scheduling from an ontological approach of job-shop uncertainty sources. IFAC Proceedings Volumes (IFAC-PapersOnline), 55(2), 150–155. https://doi.org/10.1016/j.ifacol.2022.04.185
Sidahmed Alamin, K. S., Chen, Y., Gaiardelli, S., Spellini, S., Calimera, A., Beghi, A., Susto, A., Fummi, F., MacIi, E., & Vinco, S. (2022). SMART-IC: Smart Monitoring and Production Optimization for Zero-waste Semiconductor Manufacturing. 2022 IEEE 23rd Latin American Test Symposium, LATS 2022. https://doi.org/10.1109/LATS57337.2022.9937011
Skalli, D., Charkaoui, A., Cherrafi, A., Shokri, A., Garza-Reyes, J. A., & Antony, J. (2024). Analysis of factors influencing Circular-Lean-Six Sigma 4.0 implementation considering sustainability implications: an exploratory study. International Journal of Production Research, 62(11), 3890–3917. https://doi.org/10.1080/00207543.2023.2251159
Soori, M., Arezoo, B., & Dastres, R. (2024). Virtual manufacturing in Industry 4.0: A review. In Data Science and Management (Vol. 7, Issue 1, pp. 47–63). KeAi Communications Co. https://doi.org/10.1016/j.dsm.2023.10.006
Tatipala, S., Wall, J., Johansson, C. M., & Sigvant, M. (2018). Data-driven modelling in the era of Industry 4.0: A case study of friction modelling in sheet metal forming simulations. Journal of Physics: Conference Series, 1063(1), 0–6. https://doi.org/10.1088/1742-6596/1063/1/012135
Tewari, A. (2017). Total Productive Maintenance- A Review. International Journal for Research in Applied Science and Engineering Technology, V(IV), 406–410. https://doi.org/10.22214/ijraset.2017.4072
Todolí-Ferrandis, D., Silvestre-Blanes, J., Santonja-Climent, S., Sempere-Paya, V., & Vera-Pérez, J. (2018). Deploy&Forget wireless sensor networks for itinerant applications. Computer Standards and Interfaces, 56, 27–40. https://doi.org/10.1016/j.csi.2017.09.002
Valle, P. H. D., Garcés, L., Volpato, T., Martínez-Fernández, S., & Nakagawa, E. Y. (2021). Towards suitable description of reference architectures. PeerJ Computer Science, 7(2013), 1–36. https://doi.org/10.7717/peerj-cs.392
Venanzi, R., Dahdal, S., Solimando, M., Campioni, L., Cavalucci, A., Govoni, M., Tortonesi, M., Foschini, L., Attana, L., Tellarini, M., & Stefanelli, C. (2023). Enabling adaptive analytics at the edge with the Bi-Rex Big Data platform. Computers in Industry, 147. https://doi.org/10.1016/j.compind.2023.103876
Verna, E., Genta, G., Galetto, M., & Franceschini, F. (2021). Towards Zero Defect Manufacturing: Probabilistic model for quality control effectiveness. 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, 522–526. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488487
Vinod, M., Devadasan, S. R., Sunil, D. T., & Thilak, V. M. M. (2015). Six Sigma through Poka-Yoke: a navigation through literature arena. International Journal of Advanced Manufacturing Technology, 81(1–4), 315–327. https://doi.org/10.1007/s00170-015-7217-9
Willner, A., & Gowtham, V. (2020). Toward a Reference Architecture Model for Industrial Edge Computing. IEEE Communications Standards Magazine, 4(4), 42–48. https://doi.org/10.1109/MCOMSTD.001.2000007
Ye, X., Song, W. S., Hong, S. H., Kim, Y. C., & Yoo, N. H. (2022). Toward Data Interoperability of Enterprise and Control Applications via the Industry 4.0 Asset Administration Shell. IEEE Access, 10, 35795–35803. https://doi.org/10.1109/ACCESS.2022.3163738
Zio, E., & Miqueles, L. (2024). Digital twins in safety analysis, risk assessment and emergency management. In Reliability Engineering and System Safety (Vol. 246). Elsevier Ltd. https://doi.org/10.1016/j.ress.2024.110040
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Miguel Angel Mateo-Casalí, Dr. Andres Boza, Dr. Francisco Fraile

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista de Estudios Empresariales. Segunda Época, utiliza PKP Preservation Network (PN).