Processing of heterogeneous data on the state of centralized water supply using geoinformation technologies

Authors

DOI:

https://doi.org/10.17561/at.29.8692

Keywords:

Centralized water supply system, Hydrodynamic model, Analytical support, GIS technologies

Abstract

With the growth of the urban population, new pipelines of different ages, materials and sizes are being added to the existing network, thereby complicating the task of monitoring operation and maintenance. There are constant leaks of extracted and transported water through worn-out plumbing. The purpose of this work is to consider and apply tools for obtaining and processing heterogeneous data obtained at key measuring points of the centralized water supply network, to develop analytical software that allows integrating the data obtained with existing GIS systems. The scientific novelty lies in the fact that on the basis of the existing methodology for assessing water quality in the water supply system, the author’s methodology was developed and optimized for the task of integral assessment of water quality, a parametric model of the technical condition of centralized water supply was applied. The results of leak detection on the water supply network are presented.

Downloads

Download data is not yet available.

References

Alves, Maria Tereza Ribeiro; Teresa, Fabricio Barreto; Nabout, João Carlos. 2014: A global scientific literature of research on water quality indices: trends, biases and future directions”. Acta Limnologica Brasiliensia, 26(3), 245-253. https://doi.org/10.1590/S2179-975X2014000300004

Antsiferov, Sergey; Usmanova, Elena. 2015: Analysis of the effect of internal corrosion on pipeline operation. Bulletin of the NSUEE. 6(49), 5-10. https://www.elibrary.ru/download/elibrary_23823491_44937569.pdf

ArcGIS. 2024: Urban Planning and Development. ArcGIS https://www.esri.com/en-us/about/about-esri/technology

Bernabé-Crespo, Miguel Borja. 2022: Implicaciones y perspectivas del mix hídrico para el abastecimiento de agua potable en el sureste de España. Agua y Territorio / Water and Landscape, 20, 5-21. https://doi.org/10.17561/at.20.5714

Bernabé-Crespo, Miguel Borja; Loáiciga, Hugo. 2019: El suministro hídrico a la aglomeración urbana de Los Ángeles, California (EEUU). Agua y Territorio / Water and Landscape, 13, 35-42. https://doi.org/10.17561/at.13.3789

Bernabé-Crespo, Miguel Borja; Olcina Cantos, Jorge; Lahora Agustín. 2022: Examining the implementation of potable water reuse in sewersheds of Southeastern Spain. Urban Water Journal, 19(6), 629-640. https://doi.org/10.1080/157306 2X.2022.2069043

Cen, Hang; Huang, Delong; Liu, Qiang; Zong, Zhongling; Tang, Aiping. 2023: Application Research on Risk Assessment of Municipal Pipeline Network Based on Random Forest Machine Learning Algorithm. Water, 15(10), 1964. https://doi.org/10.3390/w15101964

Ercin, Artug; Hoekstra, Arjen. 2014: Water footprint scenarios for 2050: A global analysis. Environment International. 64, 71-82. https://doi.org/10.1016/j.envint.2013.11.019

Federal Service for Supervision of Consumer Rights Protection and Human Well-being. 2020: Methodology for assessing the improvement of the quality of drinking water supplied by centralized drinking water supply systems, Methodological recommendations MP 2.1.4.0143-19. Legalacts https://legalacts.ru/doc/mr-2140143-19-214-pitevaja-voda-i-vodosnabzhenie-naselennykh-mest/

González Trujillo, Mayelin; García Tejera, Rogelio; Duran Silveira, María Teresa; Grau Cádiz, Celia Rosa. 2022. The impact of land use on the vulnerability of an aquifer in the San Juan watershed, Cuba. Agua y Territorio / Water and Landscape, 21, 21-35. https://doi.org/10.17561/at.21.6263

Gromov, Grigory; Khudyakova, Darya; Pyankov, Kirill. 2021: “Approaches to the implementation of hydraulic electronic models of centralized water supply systems”. Bulletin of MGSU, 16(5), 623-634. https://doi.org/10.22227/1997-0935.2021.5.623-634

Idrica. 2024: Smart solutions to optimise end-to-end management of drinking water supply plants and networks. Idrica. https:// www.idrica.com/platform/water/

Koc, Cem; Fehiman, Çiner; Selcuk, Toprak; Huseyin, Selcuk. 2010: The Geographical Information System (GIS) based water quality assessment of a drinking water distribution system in the Denizli City. Desalination and Water Treatment 19, 1, 318-324 https://doi.org/10.5004/dwt.2010.1940

Koppel, Tiit; Vassiljev, Anatoli. 2009: Calibration of a model of an operational water distribution system containing pipes of different age. Advances in Engineering Software, 40, 659-664. https://doi.org/10.1016/j.advengsoft.2008.11.015

Kupriyanovsky, Vasily; Schichko, Anton; Namiot, Dimitry; Kupriyanovsky, Julia. 2016: “Reasonable Water”: Integrated Water Resources Management on the basis of smart technologies and models for smart cities. International Journal of Open Information Technologies, 4(4), 20-29. http://injoit.org/index.php/j1/article/view/279/231

Kurakina, Natalia; Belkin, Ivan. 2022: Technologies of information support for quality control of drinking water supply using GIS. Izvestiya SPEU, 2, 23-31. https://doi.org/10.32603/2071-8985-2022-15-2-23-31

Larrinaga Rodríguez, Carlos. 2024: El abastecimiento de agua en una ciudad industrial: Bilbao (España), 1877-1936. Agua y Territorio / Water and Landscape, 24, 255-267. https://doi.org/10.17561/at.24.8066

Mekonnen, Masfin; Hoekstra, Arjen. 2016: Four billion people facing severe water scarcity. Science Advances, 2, e1500323. https://www.science.org/doi/10.1126/sciadv.1500323

Mohammed, Eliyas; Zeleke, Ethiopia; Abebe, Surafel. 2021: Water leakage detection and localization using hydraulic modeling and classification. Journal of Hydroinformatics, 23(4) 782-794. https://doi.org/10.2166/hydro.2021.164

Navarro-Díaz, Adrián; Delgado-Aguiñaga, Jorge-Alejandro; Begovich, Ofelia; Besançon, Gildas. 2021: Two Simultaneous Leak Diagnosis in Pipelines Based on Input-Output Numerical Differentiation. Sensors, 21, 8035. https://doi.org/10.3390/s21238035

Page, Philip; Zulu, S’bonelo; Mothetha, Matome. 2019: Remote real-time pressure control via a variable speed pump in a specific water distribution system. Journal of Water Supply: Research and Technology-Aqua, 68, 20-28. https://doi.org/10.2166/aqua.2018.074

Pineda-Pablos, Nicolás.; Salazar-Adams, Alejandro. 2016: Cities and drought in Mexico. Water management as a mitigation critical strategy. Tecnología y Ciencias del Agua, 7, 95-113. https://www.cabdirect.org/cabdirect/abstract/20183068452

Romanov, Roman; Kochetkova, Sofia. 2022: Development of a parametric model of the technical condition of centralized wa¬ter supply. Proceedings of Tula State University. Technical sciences. 10, 137-140 https://www.elibrary.ru/download/elibrary_54960546_80621163.pdf

Romanov, Roman; Kochetkova, Sofia. 2023: Information model of the centralized water supply monitoring system using GIS, in Proceedings of SPIE 12564, 2nd International Conference on Computer Applications for Management and Sustainable Development of Production and Industry (CMSD-II-2022), 125640M. https://doi.org/10.1117/12.2669229

Rosaneli, Caroline; Fischer, Marta Luciane; Sganzerla, Anor; Neto, Alberto Paulo. 2021: Interação água e saúde global: uma questão bioética. Agua y Territorio / Water and Landscape, 19, 111-124. https://doi.org/10.17561/at.19.5471

Santos-Ruíz, Ildeberto de los; Bermúdez, José Roberto; López-Estrada, Francisco Ronay; Puig, Vicenç; Torres, Lizeth; Delgado-Aguiñaga, Jorge Alejandro. 2018: Online leak diagnosis in pipelines using an EKF-based and steady-state mixed approach. Control Systems Engineering, 81, 55-64. https://doi.org/10.1016/j.conengprac.2018.09.006

Scanpoint geomatics limited (SGL). 2024: Role of Geo-Spatial Technology (GIS) in Water Resource Management https://www.sgligis.com/gis-for-water-resource/

Shojaie, Elham; Darihaki, Farzin; Shirazi, Siamack. 2023: A method to determine the uncertainties of solid particle erosion measurements utilizing machine learning techniques. Wear, 522, 204688. https://doi.org/10.1016/j.wear.2023.204688

State Report of the Russian Federation. 2021: On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2020. 256. https://www.rospotrebnadzor.ru/upload/iblock/5fa/gd-seb_02.06-_s-podpisyu_.pdf

Syromyatnikov, Denis; Pyatkina, Darya; Kondratenko, Larisa; Krivolapov, Sergey; Stepanova, Diana. 2019: Big data analysis for studying water supply and sanitation coverage in cities (Russia). Espacios, 40(27), 14. https://www.revistaespacios.com/a19v40n27/19402721.html

United Nations, Department of Economic and Social Affairs, Population Division. ST/ESA/SER.A/420. 2019: Prospects for global urbanization. United Nations, New York (USA) http://www.megacities.uni-koeln.de/documentation/megacity/statistic/wup2003.pdf

United Nations, General Assembly Resolution A/RES/76/ 153. 16 December 2021. 2021: Human rights to safe drinking water and sanitation United Nations, New York (USA) https://documents.un.org/doc/undoc/gen/n21/402/23/pdf/n21 40223.pdf

Zahedi, Peyman; Parvandeh, Saeid; Asgharpour, Alireza; McLaury, Brenton; Shirazi, Siamack; McKinney, Brett. 2018: Random forest regression prediction of solid particle Erosion in elbows. Powder Technology, 338, 983-992. https://doi.org/10.1016/j.pow-tec.2018.07.055

Zhou, Xiao; Tang, Zhenheng; Xu, Weirong; Meng, Fanlin; Chu, Xiaowen; Xin, Kunlun; Fu, Guangtao. 2019: Deep learning identifies accurate burst locations in water distribution networks. Water Research, 166, 115058. https://doi.org/10.1016/j.watres.2019.115058

ZuluGIS. 2024: ZuluGIS is a system for creating maps, modeling engineering networks and developing GIS applications https://www.politerm.com/products/geo/zulugis/

Published

2026-01-10

How to Cite

Romanov, R. V. (2026). Processing of heterogeneous data on the state of centralized water supply using geoinformation technologies. Agua Y Territorio Water and Landscape, 29, 279-289. https://doi.org/10.17561/at.29.8692