Forecasting the exchange rate in Colombia (TRM) using ARIMA-GARCH models during the period 1992–2025
DOI:
https://doi.org/10.17561/ree.n1.2026.9661Keywords:
ARIMA, GARCH, dollar, forecast, econometrics, macroeconomicsAbstract
The economic figures forecast as exchange rate or the consumer price index are an essential tool for economic authorities, based on economic research analysts' expectations make decisions with effect in all society. This research has as objective to determinate a useful econometric model to forecast the Colombian exchange rate USD/COP (TRM). For this reason, it developed quantitative research applying ARIMA-GARCH models using time series data for TRM between 1992 and 2022. The results suggest that the model presented in this work achieves adequately filtered the information contained in lags using Q-Stat test, without simple autocorrelation problems at 5% in statistical significance. This permits us to establish that the estimated parameters for forecasting the TRM are significant. Consequently, it is concluded that the model has predictive capacity to forecast the exchange rate between the Colombian peso and the US dollar in the short term.
Downloads
References
Arce, P., Antognini, J., Poller, W. K., & Salinas, L. (2019). Modelo basado en cointegración rápido y adaptativo para pronosticar series temporales financieras de alta frecuencia. Computación Económica, 54, 99–112. https://doi.org/10.1007/s10614-017-9691-7
Ayala, R. F., & Bucio, C. (2020). Modelo ARIMA aplicado al tipo de cambio peso-dólar en el periodo 2016-2017 mediante ventanas temporales deslizantes. Revista mexicana de economía y finanzas, 15(3), 331–354. https://doi.org/10.21919/remef.v15i3.466
Baghestani, H. (1992). On the formation of expected inflation under various conditions?: Some survey evidence. The Journal of Business, 65(2), 281–293. https://www.jstor.org/stable/2353166
Box, G. E. P., & Jenkins, G. M. (1989). Time series analysis: Forecasting and control (1970). https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12194?utm_source=researchgate
Cao, X., & Zhao, Z. (2022). Research on stock index forecasting based on ARIMA-GARCH and SVM mixed model. Highlights in Science, Engineering and Technology, 1, 40–46. https://doi.org/10.54097/hset.v4i.843
Clauson, A. L. (1997). Forecasting retail food prices under current conditions. American Journal of Agricultural Economics, 79(5), 1669–1672. https://doi.org/10.2307/1244400
Clavijo, S. (2001). El régimen de flotación cambiaria en Colombia. (Vol. 7, Issue 2). https://www.banrep.gov.co/es/el-regimen-flotacion-cambiaria-colombia
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers. ISBN 9780805802832.
Dagum, E. B., & Morry, M. (1984). Basic issues on the seasonal adjustment of the canadian consumer price index. Journal of Business & Economic Statistics, 2(3), 250–259. https://doi.org/10.1080/07350015.1984.10509392
Dritsaki, C. (2018). The performance of hybrid ARIMA-GARCH modeling and forecasting oil price. International Journal of Energy Economics and Policy, 8(3), 14–21. https://www.econjournals.com/index.php/ijeep/article/view/6437
Dyhrberg, A. H. (2015). Bitcoin, gold and the dollar - a GARCH volatility analysis. University College Dublin. School of Economics. http://hdl.handle.net/10197/7168
Gao, J. (2021). Research on stock price forecast based on ARIMA-GARCH model. E3S Web of Conferences, 292, 02030. https://doi.org/10.1051/e3sconf/202129202030
Ghani, I. M., & Rahim, H. A. (2019). Modeling and forecasting of volatility using ARMA-GARCH: Case study on Malaysia natural rubber prices. IOP Conference Series: Materials Science and Engineering, 548(1). https://doi.org/10.1088/1757-899X/548/1/012023
Granger, P. N., & Jenkins, C. W. (1974). Experience with forecasting univariate time series and the combination of forecasts. Journal of the Royal Statistical Society, 137(2), 131–165. http://www.jstor.com/stable/2344546
Guo, W., Liu, Q., Luo, Z., & Tse, Y. (2022). Forecasts for international financial series with VMD algorithms. Journal of Asian Economics, 82. https://doi.org/10.1016/j.asieco.2022.101458
Jain, R. K. (1989). The seasonal adjustment procedures for the consumer price indexes: Some empirical results. Journal of Business & Economic Statistics, 7(4), 461–469. https://doi.org/10.1080/07350015.1989.10509758
Kang, H. (1986). Univariate ARIMA forecasts of defined variables. Journal of Business & Economic Statistics, 4(1), 81–86. https://doi.org/10.2307/1391389
Kučera, J., Kalinová, E., & Divoká, L. (2022). Profitability of current investments in stock indexes. Entrepreneurship and Sustainability Issues, 10(1), 420–434. https://doi.org/10.9770/jesi.2022.10.1(23)
Kumari, S., & Gupta, J. (2022). Forecasting SGD-INR exchange return: An application of autoregressive integrated moving average. ANUSANDHAN - NDIM's Journal of Business and Management Research, 4(1), 16–22. https://doi.org/10.56411/anusandhan.2022.v4i1.16-22
Lee, T., Wang, H., Xi, Z., & Zhang, R. (2023). Density forecast of financial returns using decomposition and maximum entropy. Diario de Métodos Econométricos, 12(1), 57–83. https://doi.org/10.1515/jem-2020-0014
Lewis-Beck, M., Bryman, A., & Futing Liao, T. (2012). Box-Jenkins modeling. The SAGE Encyclopedia of Social Science Research Methods, 1–2. https://doi.org/10.4135/9781412950589.n80
Li, Z., Han, J., & Song, Y. (2020). On the forecasting of high-frequency financial time series based on ARIMA model improved by deep learning. Journal of Forecasting, 39(7), 1081–1097. https://doi.org/10.1002/for.2677
Madrid, C., Pellegrini, S., Ruiz, E., & Espasa, A. (2007). The relationship between ARIMA-GARCH and unobserved component models with GARCH disturbances. (Working Paper). https://ideas.repec.org/p/cte/wsrepe/ws072706.html
Najamudin, M., & Fátima, S. (2022). Hybrid BRNN-ARIMA model for financial time series forecasting. Sukkur IBA Journal of Computing and Mathematical Sciences, 6(1), 62–71. https://doi.org/10.30537/sjcms.v6i1.1027
Pahlavani, M., & Reza, R. (2015). The comparison among ARIMA and hybrid ARIMA-GARCH models in forecasting the exchange rate of Iran. International Journal of Business and Development Studies, 7(1), 31–50. https://ijbds.usb.ac.ir/article_2198.html
Peng, Z., Khan, F. U., Khan, F., Shaikh, P. A., Yonghong, D., Ullah, I., & Ullah, F. (2020). An application of hybrid models for weekly stock market index prediction: Empirical evidence from SAARC countries. Complexity in Financial Markets. https://doi.org/10.1155/2021/5663302
Pinčák, R., & Bartoš, E. (2015). With string model to time series forecasting. Physica A: Statistical Mechanics and its Applications, 436, 135–146. https://doi.org/10.1016/j.physa.2015.05.013
Shen, W., Guo, X., Wu, C., & Wu, D. (2011). Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 24(3), 378–385. https://doi.org/10.1016/j.knosys.2010.11.001
Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit prediction using ARIMA, SARIMA and LSTM models in time series forecasting: A comparison. IEEE Access, 10, 124715–124727. https://doi.org/10.1109/ACCESS.2022.3224938
Staffini, A. (2022). Stock price forecasting by a deep convolutional generative adversarial network. Frontiers in Artificial Intelligence, 5, 1–16. https://doi.org/10.3389/frai.2022.837596
Thomakos, D. D., & Bhattacharya, P. S. (2005). Forecasting Inflation, Industrial Output and Exchange Rates: A Template Study for India. Indian Economic Review, 40(2), 145–165. http://www.jstor.org/stable/29793841
Torres, L. E. (2014). Contraste entre modelos de Redes Neuronales Artificiales, GLM y GARCH en el pronóstico y análisis del tipo de cambio mexicano: 2000-2014. [Tesis de maestría, Repositorio Institucional Universidad Autónoma del Estado de México]. http://hdl.handle.net/20.500.11799/67002
Urrutia, M., & Llano, J. (2011). La crisis internacional y cambiaria de fin de siglo en Colombia. Desarrollo y Sociedad, 67, 11–48. https://doi.org/10.13043/dys.67.1
Vizek, M., & Broz, T. (2009). Modeling inflation in Croatia. Emerging Markets Finance and Trade, 45(6), 87–98. https://doi.org/10.2753/REE1540-496X450606
Wang, F., Li, M., Mei, Y., & Li, W. (2020). Time series data mining: A case study with big data analytics approach. IEEE Access, 8, 1–7. https://doi.org/10.1109/ACCESS.2020.2966553
Wang, Y., & Guo, Y. (2020). Forecasting method of stock market volatility in time series data based on mixed model of ARIMA and XGBoost. China Communications, 17(3), 205–221. https://doi.org/10.23919/JCC.2020.03.017
Published
Issue
Section
License
Copyright (c) 2025 Edgar Ricardo Jiménez-M´éndez, Nicolas Aguilera-Peña, Raúl Alberto Cortés-Villafradez

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors maintain the copyright, but they guarantee the journal its right for publication, that is under Creative Commons Licence, permitting others share the work, whereas clearly indicating the author and the first publication of the journal.
- Authors could adopt non-exclusive licence agreements for delivering the published version, whereas clearly indicating the first publishing in Revista de Estudios Empresariales. Second Era.
- Authors are encouraged to spread their works through Internet before and during the sending process, in order to make interesting scientific discussions that could increase the cites of the published work (Open Citation Project).
Revista de Estudios Empresariales. Second Era, uses PKP Preservation Network (PN).






















